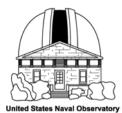


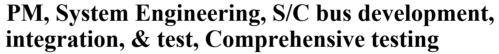
The Full-sky Astrometric Mapping Explorer

Lessons Learned
Presented to
Explorer Retreat
September 30, 2003
Kenneth J. Johnston
Scientific Director
U.S. Naval Observatory



Full-sky
Astrometric
Mapping
Explorer

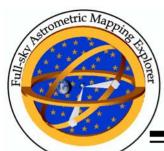
http://www.usno.navy.mil/fame


Full-sky Astrometric Mapping Explorer

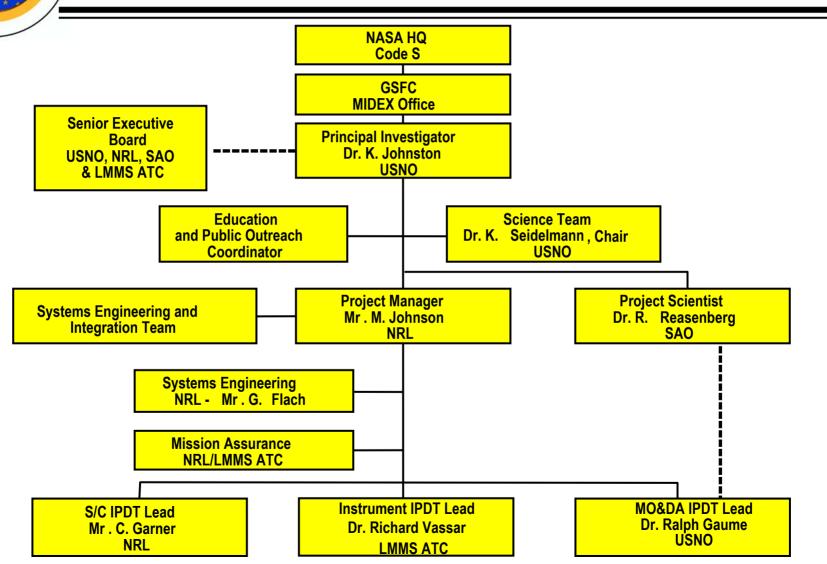
United States Naval Observatory

PI, Oversight of science and budget, MO&DA Lead, GDS, MOC, & SOC development and implementation, E/PO Lead

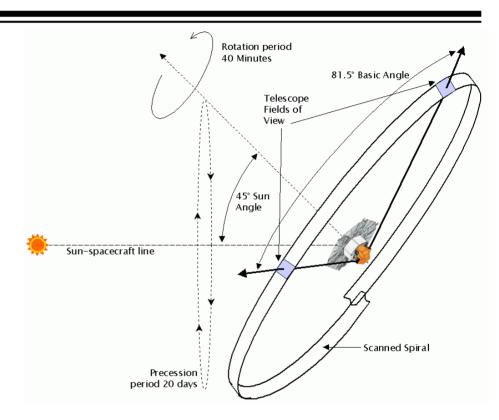
Instrument design, fabrication, testing, & support


Smithsonian Astrophysical Observatory

PS, Synthesis and verification of scientific measurement system, E/PO support



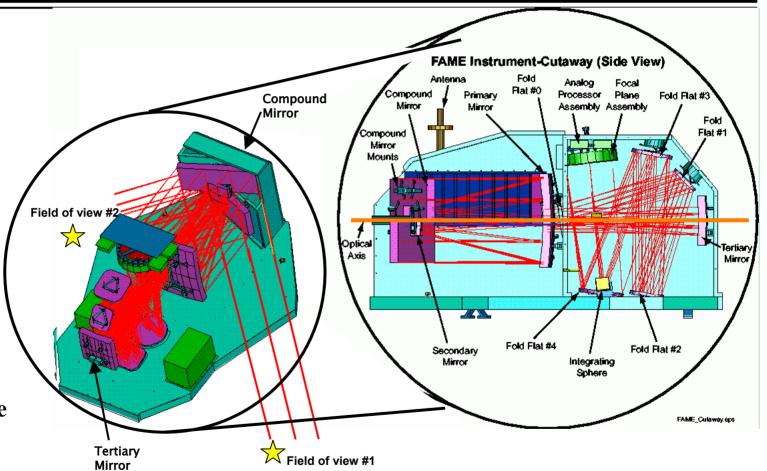
FAME Management


Technical Goals and Objectives of FAME

- **♦ FAME** will perform an all sky, astrometric survey with unprecedented accuracy
 - Upgrades existing star catalogs by providing a precision catalog of 4x10⁷ Stars
 - Provides positions of bright stars ($5 < m_v < 9$) to $< 50 \mu as$
 - * Provides positions of fainter stars (9<m $_{\! v}\!<\!15)$ to $<\!500\mu as$
 - 5 year extended mission allows for accurate measurement of stellar parallax, proper motions, and monitoring of stellar variability
 - ' Photometric data in four Sloan DSS bands (g', r', i', z')

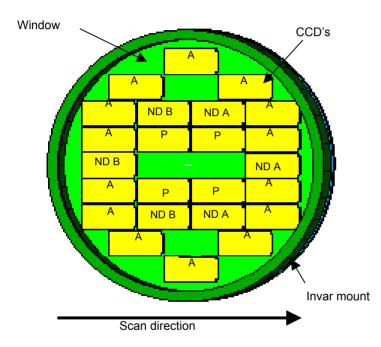
FAME Mission Description

- ♦ The telescope has two fields-of-view separated by a 81.5° basic angle
- ♦ The spacecraft will rotate with a 40 minute period with the apertures sweeping out a great circle on the sky
- ◆ The spacecraft rotation axis is at a 45° angle to the Sun
- ◆ The solar radiation pressure on the solar shield results in precession about the Sun-spacecraft line with a 20 day period
- The spacecraft is in Geosychronous orbit for continuous contact


The FAME observing concept - The axis of the FAME spacecraft is pointed 45° from the Sun and precesses around the Sun with a 20 day period. The FAME spacecraft rotates with a 40 minute period. The two fields of view are normal to the rotation axis and are separated by a 81.5° degree basic angle.

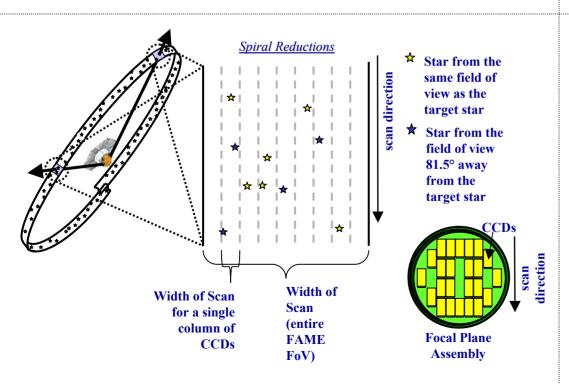
FAME Instrument Description

- Two input apertures
- ◆ 60 🖥 25 cm aperture size (each)
- Total mass229 kg

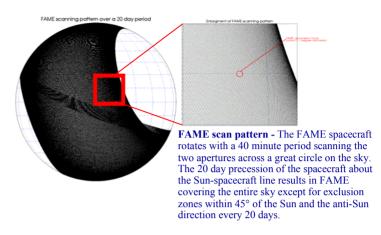

- ◆ Total power 272 W
- 400 to 900nm spectral range
- Back illuminated CCDs

 Instrument developed by Lockheed Martin Missiles and Space ATC

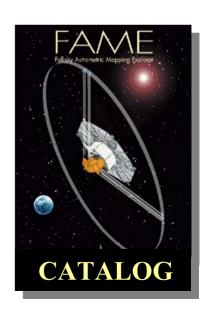
FAME Instrument Description


The FAME focal plane - 24 2k·4k CCDs arranged around a 1.1° diameter field of view. Devices marked with 'P' are the 4 photometric CCDs and devices marked with 'A' are the 20 astrometric CCDs. The 6 devices marked with 'ND' have neutral density filters for astrometry of brighter stars.

- ◆ Telescope produces images of Stars using 24 large format CCDs
 - Images of stars are continually traversing CCD array as the spacecraft rotates
 - CCDs use time delay integration
 - Synchronization of CCD clock rate and image motion is assured via rotation rate sensors
 - Star images are time tagged, windowed, and transmitted to Earth.
 - 6 CCDs are covered by neutral density filters for astrometry of bright stars


Unbinned image of a star on the CCD Grant of the CCD Grant of the CCD Pixels in the cross-scan direction On-chip binning Unbinned image of a star on the CCD On-chip binning Unbinned image of a star on the CCD On-chip binning Unbinned image of a star on the CCD On-chip binning On-chip bin-chip binning On-chip binning On-chip binning On-chip binning

The data from most stars are binned by 20 in the cross-scan direction on the CCD before being read-out


Pixels in the scan direction

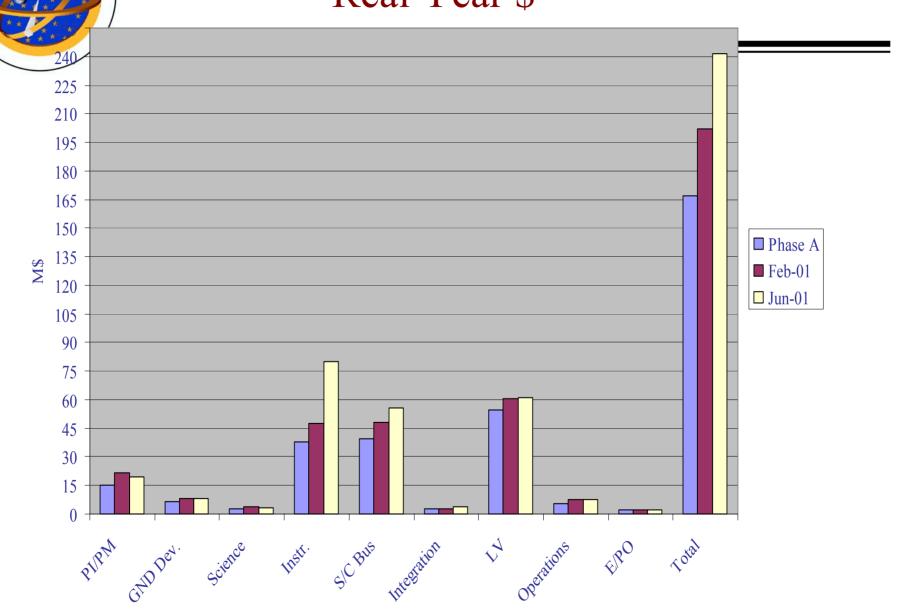
Sphere Reconstruction

Use a subset of the stars to globally tie the spirals together into a sphere

Original FAME Schedule

Phase A Concept Study February - June 1999 Phase B **September 2000 - June 2001** Phase C **July 2001 - March 2002** Phase D **April 2002 - June 2004** Launch **June 2004** Phase E **July 2004 - January 2008 DoD Extended Mission**

January 2007 - July 2010



Major Milestones in Phase B

- Define Requirements
- Delivery of CCDs
 - March 2001 Two Evaluation CCDs
 - June 01 10 Engineering Model CCDs
 - December 2001 44 Flight CCDs
- Optics
 - Optics Contract in Place January 10, 2001
 - Optical Elements Delivered July 7, 2002
- Bus
 - Procure Long Lead Items

FAME Cost Estimates June 01 Real Year \$

Budget June 01

Cost Increases

- Program Delay
 - ▶ 4 month slip
- Optical Design
 - Increase in fabrication costs
 - Schedule slip 10 22 months
 - ▶ focus
- CCD's
 - Delay in fabrication
 - power consumption
 - mass increase
- ACS/Solar Precession
 - Mass increase
- Overhead Costs

Efforts to Reduce Cost

-Scope Mission with Minimal Impact to Science

- Reduce area of optics by 50%
 - ▶ Reduces Mass/Simplified Fabrication
- Reduce Number of CCDs to 13
 - ▶ Reduction in Power and Data Rate
- Pull schedule back in 8 months (to Oct 04 launch date)
 - Optics Lead time drives overall schedule
- Simplify Spacecraft Bus
 - Reduce Sun Angle to 35 degrees
 - ▶ Eliminate Deployable Arrays
 - Reduce Data Rate by 50%
 - ▶ Half the CCDs Eliminate Power Amplifiers

FAME Schedule

- ◆ Aug 2001
 - Re-scope Instrument/Bus
- ◆ Sept 2001
 - Science Team Input
- ♦ Nov 2001
 - PDR
- ◆ Dec 2001
 - Confirmation Review
- Recover Original Schedule

Independent Confirmation Assessment Team (ICAT)

- Science: Still Very Attractive
- Management & System Engineering
 - C/D Baseline is appropriate
- Spacecraft
 - Schedule/Cost Risk is LOW to MEDIUM
- Instrument
 - Overall Risk HIGH, Primarily due to Tight Schedule
- ◆ MO&DA
 - Technical Risk is LOW to MEDIUM
- Schedule
 - Program Schedule Risk is HIGH

ICAT Instrument Comments

- Design Maturity
 - Very Low due to Major Redesign
- No Slack in Development Schedule
 - CCD Yield Low to Date
 - Optical Design Incomplete
- Cost
 - Has grown significantly & will grow more

January 2001

- Cancellation of FAME Mission
 - Uncertainty surrounding the development of instrument CCDs and optics, instrument software development and operations algorithm development
 - » And
 - Significant mission cost growth that exceeds the cost cap by more than \$40 million and the uncertainty additional resources needed to successfully complete the mission

Lessons Learned

Phase A Plans

- Phase A Cost/Schedule Estimates
 - Optimistic Costs/Schedule
 - Difficulty Meeting Original Cost Cap of 140M(98\$)
- Planned Inadequate Budget Reserves
 - 10% bus, 20% instrument in Phase C/D
 - 30% reserve on entire project would have been reasonable

Lessons Learned

Phase B

Communications

- Project scientist
 - Delay in replacement
- LMATC-USNO Scientists
 - Critical requirements for optics
- Loss of Key Personnel
- Science Req => Engineering Req
- Project Management Office
 - Staffing: Program Office, Systems Engineering

Lessons Learned

- Developing New Technologies
 - CCDs
 - ▶ Readout rate >3Mhz
 - Charge Injection for radiation mitigation
 - Spin Dynamics of Observatory
 - Impossible to demonstrate on the ground

Recommendations

- Allow Adequate Reserves
- Need Realistic Estimate of Costs/Schedule
- Reduce Risks on Unique Items
 - Alternate CCD order
- Must have Integrated Science/Engineering Team
- Need Viable Descope Options